\(\int (a+a \cos (c+d x))^{5/2} \sec ^5(c+d x) \, dx\) [120]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [B] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F(-1)]
   Giac [A] (verification not implemented)
   Mupad [F(-1)]

Optimal result

Integrand size = 23, antiderivative size = 182 \[ \int (a+a \cos (c+d x))^{5/2} \sec ^5(c+d x) \, dx=\frac {163 a^{5/2} \text {arctanh}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right )}{64 d}+\frac {163 a^3 \tan (c+d x)}{64 d \sqrt {a+a \cos (c+d x)}}+\frac {163 a^3 \sec (c+d x) \tan (c+d x)}{96 d \sqrt {a+a \cos (c+d x)}}+\frac {17 a^3 \sec ^2(c+d x) \tan (c+d x)}{24 d \sqrt {a+a \cos (c+d x)}}+\frac {a^2 \sqrt {a+a \cos (c+d x)} \sec ^3(c+d x) \tan (c+d x)}{4 d} \]

[Out]

163/64*a^(5/2)*arctanh(sin(d*x+c)*a^(1/2)/(a+a*cos(d*x+c))^(1/2))/d+163/64*a^3*tan(d*x+c)/d/(a+a*cos(d*x+c))^(
1/2)+163/96*a^3*sec(d*x+c)*tan(d*x+c)/d/(a+a*cos(d*x+c))^(1/2)+17/24*a^3*sec(d*x+c)^2*tan(d*x+c)/d/(a+a*cos(d*
x+c))^(1/2)+1/4*a^2*sec(d*x+c)^3*(a+a*cos(d*x+c))^(1/2)*tan(d*x+c)/d

Rubi [A] (verified)

Time = 0.58 (sec) , antiderivative size = 182, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.217, Rules used = {2841, 3059, 2851, 2852, 212} \[ \int (a+a \cos (c+d x))^{5/2} \sec ^5(c+d x) \, dx=\frac {163 a^{5/2} \text {arctanh}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a \cos (c+d x)+a}}\right )}{64 d}+\frac {163 a^3 \tan (c+d x)}{64 d \sqrt {a \cos (c+d x)+a}}+\frac {17 a^3 \tan (c+d x) \sec ^2(c+d x)}{24 d \sqrt {a \cos (c+d x)+a}}+\frac {163 a^3 \tan (c+d x) \sec (c+d x)}{96 d \sqrt {a \cos (c+d x)+a}}+\frac {a^2 \tan (c+d x) \sec ^3(c+d x) \sqrt {a \cos (c+d x)+a}}{4 d} \]

[In]

Int[(a + a*Cos[c + d*x])^(5/2)*Sec[c + d*x]^5,x]

[Out]

(163*a^(5/2)*ArcTanh[(Sqrt[a]*Sin[c + d*x])/Sqrt[a + a*Cos[c + d*x]]])/(64*d) + (163*a^3*Tan[c + d*x])/(64*d*S
qrt[a + a*Cos[c + d*x]]) + (163*a^3*Sec[c + d*x]*Tan[c + d*x])/(96*d*Sqrt[a + a*Cos[c + d*x]]) + (17*a^3*Sec[c
 + d*x]^2*Tan[c + d*x])/(24*d*Sqrt[a + a*Cos[c + d*x]]) + (a^2*Sqrt[a + a*Cos[c + d*x]]*Sec[c + d*x]^3*Tan[c +
 d*x])/(4*d)

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 2841

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim
p[(-b^2)*(b*c - a*d)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 2)*((c + d*Sin[e + f*x])^(n + 1)/(d*f*(n + 1)*(b*c
 + a*d))), x] + Dist[b^2/(d*(n + 1)*(b*c + a*d)), Int[(a + b*Sin[e + f*x])^(m - 2)*(c + d*Sin[e + f*x])^(n + 1
)*Simp[a*c*(m - 2) - b*d*(m - 2*n - 4) - (b*c*(m - 1) - a*d*(m + 2*n + 1))*Sin[e + f*x], x], x], x] /; FreeQ[{
a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[m, 1] && LtQ[n, -1
] && (IntegersQ[2*m, 2*n] || IntegerQ[m + 1/2] || (IntegerQ[m] && EqQ[c, 0]))

Rule 2851

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp
[(b*c - a*d)*Cos[e + f*x]*((c + d*Sin[e + f*x])^(n + 1)/(f*(n + 1)*(c^2 - d^2)*Sqrt[a + b*Sin[e + f*x]])), x]
+ Dist[(2*n + 3)*((b*c - a*d)/(2*b*(n + 1)*(c^2 - d^2))), Int[Sqrt[a + b*Sin[e + f*x]]*(c + d*Sin[e + f*x])^(n
 + 1), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] &
& LtQ[n, -1] && NeQ[2*n + 3, 0] && IntegerQ[2*n]

Rule 2852

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[-2*(
b/f), Subst[Int[1/(b*c + a*d - d*x^2), x], x, b*(Cos[e + f*x]/Sqrt[a + b*Sin[e + f*x]])], x] /; FreeQ[{a, b, c
, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 3059

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.
) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b^2)*(B*c - A*d)*Cos[e + f*x]*((c + d*Sin[e + f*x])^(n + 1)/(d*f*(n
 + 1)*(b*c + a*d)*Sqrt[a + b*Sin[e + f*x]])), x] + Dist[(A*b*d*(2*n + 3) - B*(b*c - 2*a*d*(n + 1)))/(2*d*(n +
1)*(b*c + a*d)), Int[Sqrt[a + b*Sin[e + f*x]]*(c + d*Sin[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d, e, f,
 A, B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[n, -1]

Rubi steps \begin{align*} \text {integral}& = \frac {a^2 \sqrt {a+a \cos (c+d x)} \sec ^3(c+d x) \tan (c+d x)}{4 d}-\frac {1}{4} a \int \left (-\frac {17 a}{2}-\frac {13}{2} a \cos (c+d x)\right ) \sqrt {a+a \cos (c+d x)} \sec ^4(c+d x) \, dx \\ & = \frac {17 a^3 \sec ^2(c+d x) \tan (c+d x)}{24 d \sqrt {a+a \cos (c+d x)}}+\frac {a^2 \sqrt {a+a \cos (c+d x)} \sec ^3(c+d x) \tan (c+d x)}{4 d}+\frac {1}{48} \left (163 a^2\right ) \int \sqrt {a+a \cos (c+d x)} \sec ^3(c+d x) \, dx \\ & = \frac {163 a^3 \sec (c+d x) \tan (c+d x)}{96 d \sqrt {a+a \cos (c+d x)}}+\frac {17 a^3 \sec ^2(c+d x) \tan (c+d x)}{24 d \sqrt {a+a \cos (c+d x)}}+\frac {a^2 \sqrt {a+a \cos (c+d x)} \sec ^3(c+d x) \tan (c+d x)}{4 d}+\frac {1}{64} \left (163 a^2\right ) \int \sqrt {a+a \cos (c+d x)} \sec ^2(c+d x) \, dx \\ & = \frac {163 a^3 \tan (c+d x)}{64 d \sqrt {a+a \cos (c+d x)}}+\frac {163 a^3 \sec (c+d x) \tan (c+d x)}{96 d \sqrt {a+a \cos (c+d x)}}+\frac {17 a^3 \sec ^2(c+d x) \tan (c+d x)}{24 d \sqrt {a+a \cos (c+d x)}}+\frac {a^2 \sqrt {a+a \cos (c+d x)} \sec ^3(c+d x) \tan (c+d x)}{4 d}+\frac {1}{128} \left (163 a^2\right ) \int \sqrt {a+a \cos (c+d x)} \sec (c+d x) \, dx \\ & = \frac {163 a^3 \tan (c+d x)}{64 d \sqrt {a+a \cos (c+d x)}}+\frac {163 a^3 \sec (c+d x) \tan (c+d x)}{96 d \sqrt {a+a \cos (c+d x)}}+\frac {17 a^3 \sec ^2(c+d x) \tan (c+d x)}{24 d \sqrt {a+a \cos (c+d x)}}+\frac {a^2 \sqrt {a+a \cos (c+d x)} \sec ^3(c+d x) \tan (c+d x)}{4 d}-\frac {\left (163 a^3\right ) \text {Subst}\left (\int \frac {1}{a-x^2} \, dx,x,-\frac {a \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right )}{64 d} \\ & = \frac {163 a^{5/2} \text {arctanh}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right )}{64 d}+\frac {163 a^3 \tan (c+d x)}{64 d \sqrt {a+a \cos (c+d x)}}+\frac {163 a^3 \sec (c+d x) \tan (c+d x)}{96 d \sqrt {a+a \cos (c+d x)}}+\frac {17 a^3 \sec ^2(c+d x) \tan (c+d x)}{24 d \sqrt {a+a \cos (c+d x)}}+\frac {a^2 \sqrt {a+a \cos (c+d x)} \sec ^3(c+d x) \tan (c+d x)}{4 d} \\ \end{align*}

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 6.69 (sec) , antiderivative size = 388, normalized size of antiderivative = 2.13 \[ \int (a+a \cos (c+d x))^{5/2} \sec ^5(c+d x) \, dx=-\frac {a^2 \sqrt {a (1+\cos (c+d x))} \sec ^9\left (\frac {1}{2} (c+d x)\right ) \left (1467 \sqrt {2} \log \left (i-\sqrt {2} e^{\frac {1}{2} i (c+d x)}-i e^{i (c+d x)}\right )+1956 \sqrt {2} \cos (2 (c+d x)) \left (\log \left (i-\sqrt {2} e^{\frac {1}{2} i (c+d x)}-i e^{i (c+d x)}\right )-\log \left (i+\sqrt {2} e^{\frac {1}{2} i (c+d x)}-i e^{i (c+d x)}\right )\right )+489 \sqrt {2} \cos (4 (c+d x)) \left (\log \left (i-\sqrt {2} e^{\frac {1}{2} i (c+d x)}-i e^{i (c+d x)}\right )-\log \left (i+\sqrt {2} e^{\frac {1}{2} i (c+d x)}-i e^{i (c+d x)}\right )\right )-1467 \sqrt {2} \log \left (i+\sqrt {2} e^{\frac {1}{2} i (c+d x)}-i e^{i (c+d x)}\right )+2060 \sin \left (\frac {1}{2} (c+d x)\right )-6204 \sin \left (\frac {3}{2} (c+d x)\right )-652 \sin \left (\frac {5}{2} (c+d x)\right )-1956 \sin \left (\frac {7}{2} (c+d x)\right )\right )}{6144 d \left (-1+\tan ^2\left (\frac {1}{2} (c+d x)\right )\right )^4} \]

[In]

Integrate[(a + a*Cos[c + d*x])^(5/2)*Sec[c + d*x]^5,x]

[Out]

-1/6144*(a^2*Sqrt[a*(1 + Cos[c + d*x])]*Sec[(c + d*x)/2]^9*(1467*Sqrt[2]*Log[I - Sqrt[2]*E^((I/2)*(c + d*x)) -
 I*E^(I*(c + d*x))] + 1956*Sqrt[2]*Cos[2*(c + d*x)]*(Log[I - Sqrt[2]*E^((I/2)*(c + d*x)) - I*E^(I*(c + d*x))]
- Log[I + Sqrt[2]*E^((I/2)*(c + d*x)) - I*E^(I*(c + d*x))]) + 489*Sqrt[2]*Cos[4*(c + d*x)]*(Log[I - Sqrt[2]*E^
((I/2)*(c + d*x)) - I*E^(I*(c + d*x))] - Log[I + Sqrt[2]*E^((I/2)*(c + d*x)) - I*E^(I*(c + d*x))]) - 1467*Sqrt
[2]*Log[I + Sqrt[2]*E^((I/2)*(c + d*x)) - I*E^(I*(c + d*x))] + 2060*Sin[(c + d*x)/2] - 6204*Sin[(3*(c + d*x))/
2] - 652*Sin[(5*(c + d*x))/2] - 1956*Sin[(7*(c + d*x))/2]))/(d*(-1 + Tan[(c + d*x)/2]^2)^4)

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(881\) vs. \(2(158)=316\).

Time = 299.26 (sec) , antiderivative size = 882, normalized size of antiderivative = 4.85

method result size
default \(\text {Expression too large to display}\) \(882\)

[In]

int((a+cos(d*x+c)*a)^(5/2)*sec(d*x+c)^5,x,method=_RETURNVERBOSE)

[Out]

1/24*a^(3/2)*cos(1/2*d*x+1/2*c)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*(7824*a*(ln(4/(2*cos(1/2*d*x+1/2*c)+2^(1/2))*(2
^(1/2)*a*cos(1/2*d*x+1/2*c)+2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)+2*a))+ln(-4/(2*cos(1/2*d*x+1/2*c)-2
^(1/2))*(2^(1/2)*a*cos(1/2*d*x+1/2*c)-2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)-2*a)))*sin(1/2*d*x+1/2*c)
^8-7824*(2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)+2*ln(4/(2*cos(1/2*d*x+1/2*c)+2^(1/2))*(2^(1/2)*a*cos(1
/2*d*x+1/2*c)+2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)+2*a))*a+2*ln(-4/(2*cos(1/2*d*x+1/2*c)-2^(1/2))*(2
^(1/2)*a*cos(1/2*d*x+1/2*c)-2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)-2*a))*a)*sin(1/2*d*x+1/2*c)^6+1304*
(11*2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)+9*ln(4/(2*cos(1/2*d*x+1/2*c)+2^(1/2))*(2^(1/2)*a*cos(1/2*d*
x+1/2*c)+2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)+2*a))*a+9*ln(-4/(2*cos(1/2*d*x+1/2*c)-2^(1/2))*(2^(1/2
)*a*cos(1/2*d*x+1/2*c)-2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)-2*a))*a)*sin(1/2*d*x+1/2*c)^4+(-9212*2^(
1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)-3912*ln(4/(2*cos(1/2*d*x+1/2*c)+2^(1/2))*(2^(1/2)*a*cos(1/2*d*x+1/
2*c)+2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)+2*a))*a-3912*ln(-4/(2*cos(1/2*d*x+1/2*c)-2^(1/2))*(2^(1/2)
*a*cos(1/2*d*x+1/2*c)-2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)-2*a))*a)*sin(1/2*d*x+1/2*c)^2+2094*2^(1/2
)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)+489*ln(4/(2*cos(1/2*d*x+1/2*c)+2^(1/2))*(2^(1/2)*a*cos(1/2*d*x+1/2*c)
+2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)+2*a))*a+489*ln(-4/(2*cos(1/2*d*x+1/2*c)-2^(1/2))*(2^(1/2)*a*co
s(1/2*d*x+1/2*c)-2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)-2*a))*a)/(2*cos(1/2*d*x+1/2*c)+2^(1/2))^4/(2*c
os(1/2*d*x+1/2*c)-2^(1/2))^4/sin(1/2*d*x+1/2*c)/(a*cos(1/2*d*x+1/2*c)^2)^(1/2)/d

Fricas [A] (verification not implemented)

none

Time = 0.27 (sec) , antiderivative size = 196, normalized size of antiderivative = 1.08 \[ \int (a+a \cos (c+d x))^{5/2} \sec ^5(c+d x) \, dx=\frac {489 \, {\left (a^{2} \cos \left (d x + c\right )^{5} + a^{2} \cos \left (d x + c\right )^{4}\right )} \sqrt {a} \log \left (\frac {a \cos \left (d x + c\right )^{3} - 7 \, a \cos \left (d x + c\right )^{2} - 4 \, \sqrt {a \cos \left (d x + c\right ) + a} \sqrt {a} {\left (\cos \left (d x + c\right ) - 2\right )} \sin \left (d x + c\right ) + 8 \, a}{\cos \left (d x + c\right )^{3} + \cos \left (d x + c\right )^{2}}\right ) + 4 \, {\left (489 \, a^{2} \cos \left (d x + c\right )^{3} + 326 \, a^{2} \cos \left (d x + c\right )^{2} + 184 \, a^{2} \cos \left (d x + c\right ) + 48 \, a^{2}\right )} \sqrt {a \cos \left (d x + c\right ) + a} \sin \left (d x + c\right )}{768 \, {\left (d \cos \left (d x + c\right )^{5} + d \cos \left (d x + c\right )^{4}\right )}} \]

[In]

integrate((a+a*cos(d*x+c))^(5/2)*sec(d*x+c)^5,x, algorithm="fricas")

[Out]

1/768*(489*(a^2*cos(d*x + c)^5 + a^2*cos(d*x + c)^4)*sqrt(a)*log((a*cos(d*x + c)^3 - 7*a*cos(d*x + c)^2 - 4*sq
rt(a*cos(d*x + c) + a)*sqrt(a)*(cos(d*x + c) - 2)*sin(d*x + c) + 8*a)/(cos(d*x + c)^3 + cos(d*x + c)^2)) + 4*(
489*a^2*cos(d*x + c)^3 + 326*a^2*cos(d*x + c)^2 + 184*a^2*cos(d*x + c) + 48*a^2)*sqrt(a*cos(d*x + c) + a)*sin(
d*x + c))/(d*cos(d*x + c)^5 + d*cos(d*x + c)^4)

Sympy [F(-1)]

Timed out. \[ \int (a+a \cos (c+d x))^{5/2} \sec ^5(c+d x) \, dx=\text {Timed out} \]

[In]

integrate((a+a*cos(d*x+c))**(5/2)*sec(d*x+c)**5,x)

[Out]

Timed out

Maxima [F(-1)]

Timed out. \[ \int (a+a \cos (c+d x))^{5/2} \sec ^5(c+d x) \, dx=\text {Timed out} \]

[In]

integrate((a+a*cos(d*x+c))^(5/2)*sec(d*x+c)^5,x, algorithm="maxima")

[Out]

Timed out

Giac [A] (verification not implemented)

none

Time = 0.42 (sec) , antiderivative size = 192, normalized size of antiderivative = 1.05 \[ \int (a+a \cos (c+d x))^{5/2} \sec ^5(c+d x) \, dx=-\frac {\sqrt {2} {\left (489 \, \sqrt {2} a^{2} \log \left (\frac {{\left | -2 \, \sqrt {2} + 4 \, \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) \right |}}{{\left | 2 \, \sqrt {2} + 4 \, \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) \right |}}\right ) \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) + \frac {4 \, {\left (3912 \, a^{2} \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{7} - 7172 \, a^{2} \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} + 4606 \, a^{2} \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 1047 \, a^{2} \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}}{{\left (2 \, \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 1\right )}^{4}}\right )} \sqrt {a}}{768 \, d} \]

[In]

integrate((a+a*cos(d*x+c))^(5/2)*sec(d*x+c)^5,x, algorithm="giac")

[Out]

-1/768*sqrt(2)*(489*sqrt(2)*a^2*log(abs(-2*sqrt(2) + 4*sin(1/2*d*x + 1/2*c))/abs(2*sqrt(2) + 4*sin(1/2*d*x + 1
/2*c)))*sgn(cos(1/2*d*x + 1/2*c)) + 4*(3912*a^2*sgn(cos(1/2*d*x + 1/2*c))*sin(1/2*d*x + 1/2*c)^7 - 7172*a^2*sg
n(cos(1/2*d*x + 1/2*c))*sin(1/2*d*x + 1/2*c)^5 + 4606*a^2*sgn(cos(1/2*d*x + 1/2*c))*sin(1/2*d*x + 1/2*c)^3 - 1
047*a^2*sgn(cos(1/2*d*x + 1/2*c))*sin(1/2*d*x + 1/2*c))/(2*sin(1/2*d*x + 1/2*c)^2 - 1)^4)*sqrt(a)/d

Mupad [F(-1)]

Timed out. \[ \int (a+a \cos (c+d x))^{5/2} \sec ^5(c+d x) \, dx=\int \frac {{\left (a+a\,\cos \left (c+d\,x\right )\right )}^{5/2}}{{\cos \left (c+d\,x\right )}^5} \,d x \]

[In]

int((a + a*cos(c + d*x))^(5/2)/cos(c + d*x)^5,x)

[Out]

int((a + a*cos(c + d*x))^(5/2)/cos(c + d*x)^5, x)